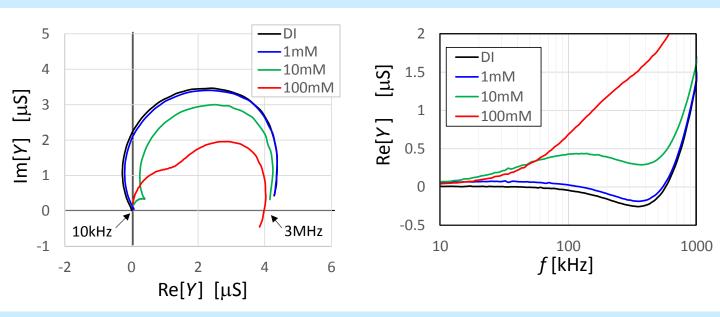


On-chip impedance sensor array measurement of small impedance in pL solution

detection of single pathogenic microorganism (virus, bacterium, parasite) in micrometer resolution


dielectric dispersion specific to pathogenic microorganism f = 1 Hz - 3 MHzsolution pathogenic microorganism $Z = 1 M\Omega - 10 G\Omega$ electrode-1 electrode-2 Za v_{s2} v_{s1} insulator v_{s1} v_{s2} i_2 i_1 7.5 mm i_1 i_2 $\overline{v_{s2}}$ S_1 (1) S_2 $\overline{v_{s1}}$ $i_1 - i_2$ **Q** (III) \bigotimes current-mode mixer $Q \otimes (i_1 - i_2)$ impedance -mode sensor unit 7 mm array peripheral 64 x 1 impedance TDC circuit sensor array 20b digital output 60 µm 7.5 mm 60µm 64 x 64 impedance

7 mm

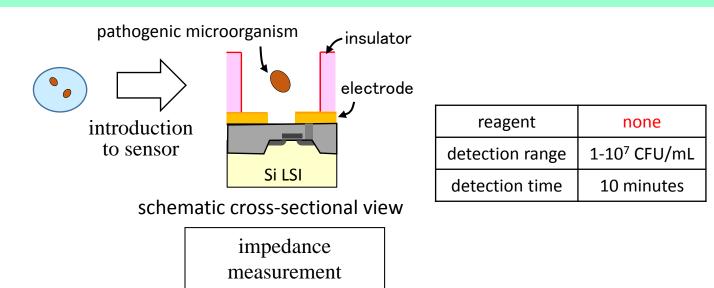
sensor array

verification using ion solution

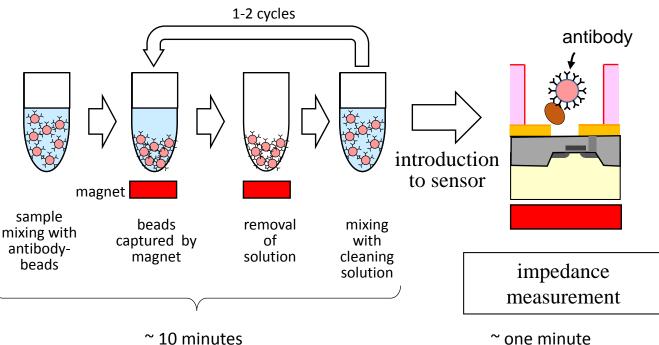
detection of E.coli

- Impedance measurement of E.coli βdispersion, which is proportional to the density.
- Impedance change can be observed by living E.coli, not by dead E.coli.

plot	solution	average number of E.coli between electrodes
	7.6 x 10 ⁶ CFU/mL	14
	7.6 x 10⁵ CFU/mL	1.4
	7.6 x 104 CFU/mL	0.14
	0 CFU/mL	0


equivalent parallel-plate permittivity $\epsilon^* = |Y|/f$

Y: admittance, f: frequency



Detection process of E.coli

Detection of living E.coli

Detection of specific E.coli

